Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by an open arc

نویسندگان

  • Pavel Exner
  • Konstantin Pankrashkin
چکیده

We consider a singular Schrödinger operator in L(R) written formally as −∆ − βδ(x − γ) where γ is a C smooth open arc in R of length L with regular ends. It is shown that the jth negative eigenvalue of this operator behaves in the strong-coupling limit, β → +∞, asymptotically as Ej(β) = − β 4 + μj +O ( log β β ) , where μj is the jth Dirichlet eigenvalue of the operator − d 2 ds2 − κ(s) 2 4 on L(0, L) with κ(s) being the signed curvature of γ at the point s ∈ (0, L).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong coupling asymptotics for Schrödinger operators with an interaction supported by an open arc in three dimensions

We consider Schrödinger operators with a strongly attractive singular interaction supported by a finite curve Γ of lenghth L in R. We show that if Γ is C-smooth and has regular endpoints, the j-th eigenvalue of such an operator has the asymptotic expansion λj(Hα,Γ) = ξα+λj(S)+O(e) as the coupling parameter α → ∞, where ξα = −4 e2(−2πα+ψ(1)) and λj(S) is the j-th eigenvalue of the Schrödinger op...

متن کامل

ar X iv : m at h - ph / 0 30 30 33 v 1 1 3 M ar 2 00 3 Strong - coupling asymptotic expansion for Schrödinger operators with a singular

We investigate a class of generalized Schrödinger operators in L 2 (R 3) with a singular interaction supported by a smooth curve Γ. We find a strong-coupling asymptotic expansion of the discrete spectrum in case when Γ is a loop or an infinite bent curve which is asymptotically straight. It is given in terms of an auxiliary one-dimensional Schrödinger operator with a potential determined by the...

متن کامل

Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop

In this paper we investigate the operator Hβ = −∆−βδ(·−Γ) in L (R), where β > 0 and Γ is a closed C Jordan curve in R. We obtain the asymptotic form of each eigenvalue of Hβ as β tends to infinity. We also get the asymptotic form of the number of negative eigenvalues of Hβ in the strong coupling asymptotic regime. MSC: 35J10, 35P15

متن کامل

On geometric perturbations of critical Schrödinger operators with a surface interaction

We study singular Schrödinger operators with an attractive interaction supported by a closed smooth surface A ⊂ R3 and analyze their behavior in the vicinity of the critical situation where such an operator has empty discrete spectrum and a threshold resonance. In particular, we show that if A is a sphere and the critical coupling is constant over it, any sufficiently small smooth area preservi...

متن کامل

Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface

Given n ≥ 2, we put r = min{ i ∈ N; i > n/2 }. Let Σ be a compact, Cr-smooth surface in Rn which contains the origin. Let further {Sǫ}0≤ǫ<η be a family of measurable subsets of Σ such that supx∈Sǫ |x| = O(ǫ) as ǫ → 0. We derive an asymptotic expansion for the discrete spectrum of the Schrödinger operator −∆−βδ(·−Σ\Sǫ) in L2(Rn), where β is a positive constant, as ǫ → 0. An analogous result is g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012